Наша рассылка!
Новости сайта Модно-Красиво.ру Вы можете получать прямо на мейл
Рассылки Subscribe.Ru

Подписаться письмом

Терморегуляторная функция липидов


Терморегуляторная функция липидов

Классификация липидов

Классификаций липидов разработано несколько. При этом чаще всего используют классификацию, группирующую липиды по структурным отличиям. Согласно этой классификации выделяют такие классы липидов:
Простые: сюда входят сложные эфиры жирных кислот и спирты.
1. Глицериды – это сложные эфиры 3-атомного спирта глицерина и высших жирных кислот.
2. Воски – сложные эфиры 1- или 2-атомных спиртов и высших жирных кислот.
Сложные: сложные эфиры жирных кислот со спиртами, в которые включены и иные группы.
1. Фосфолипиды. В этих жирах кроме жирных кислот и спирта включены и следы фосфорной кислоты, азотистые компоненты, а также сфинголипиды и глицерофосфолипиды.
2. Гликолипиды
3. Стероиды
4. Иные сложные жиры: аминолипиды, сульфолипиды, а также липопротеины.
Производные липидов: глицерол, жирные кислоты, стеролы, альдегиды жирных кислот, жирорастворимые гормоны и витамины, углеводороды.
В живом организме жиры выполняют такие действия:
1. Структурная функция заключается в том, что они являются материалом для мембран клеток.
2. Регуляторная функция заключается в том, что жиры входят в состав гормонов, витаминов, а также участвуют в движении нервных импульсов.
3. Транспортная функция заключается в том, что с помощью липопротеинов и соединений с альбумином переносятся различные вещества по организму.
4. Терморегуляторная функция – жиры помогают защитить тело от переохлаждения.
5. Энергетическая функция – жир представляет собой «склад» сырья для дальнейшей переработки и получения энергии в случае недостаточного поступления ее с пищей.

Функции липидов

Липиды выступают важнейшим источником энергетического запаса организма. Факт очевиден даже на номенклатурном уровне: греческое «липос» переводится как жир. Соответственно, категория липидов объединяет жироподобные вещества биологического происхождения. Функционал соединений достаточно разнообразен, что обусловлено неоднородностью состава данной категории био-объектов.

Какие функции выполняют липиды

Перечислите основные функции липидов в организме, которые являются основными. На ознакомительном этапе целесообразно выделить ключевые роли жироподобных веществ в клетках организма человека. Базовый перечень – это пять функций липидов:

  1. резервно-энергетическая;
  2. структурообразующая;
  3. транспортная;
  4. изолирующая;
  5. сигнальная.

К второстепенным задачам, которые липиды выполняют в сочетании с другими соединениями можно отнести регуляторную и ферментативную роль.

Энергетический запас организма

Это не только одна из важных, но приоритетная роль жироподобных соединений. По сути, часть липидов является.источником энергии всей клеточной массы. Действительно, жир для клеток – аналог топлива в баке автомобиля. Реализуется энергетическая функция липидами следующим образом. Жиры и подобные им вещества окисляются в митохондриях, расщепляясь до уровня воды и двуокиси углерода. Процесс сопровождается выделением значительного количества АТФ – высокоэнергетических метаболитов. Их запас позволяет клетке участвовать в энергозависимых реакциях.

Структурные блоки

Одновременно, липиды осуществляют строительную функцию: с их помощью формируется мембрана клетки. В процессе участвуют следующие группы жироподобных веществ:

  1. холестерин – липофильный спирт;
  2. гликолипиды – соединения липидов с углеводами;
  3. фосфолипиды – эфиры сложных спиртов и высших карбоновых кислот.

Следует отметить, что в сформировавшейся мембране, непосредственно жиры не содержатся. Образовавшаяся стенка между клеткой и внешней средой оказывается двухслойной. Это достигается вследствие бифильности. Подобная характеристика липидов указывает, что одна часть молекулы – гидрофобна, то есть нерастворима в воде, вторая, напротив – гидрофильна. Как результат, бислой клеточной стенки формируется вследствие упорядоченного расположения простых липидов. Молекулы разворачиваются гидрофобными участками друг к другу, тогда как гидрофильные хвосты направлены внутрь и вне клетки.

Это определяет защитные функции мембранных липидов. Во-первых, мембрана придает клетке форму и даже сохраняет ее. Во-вторых, двойная стенка – своеобразный пункт паспортного контроля, не пропускающий через себя нежелательных визитеров.

Автономная система отопления

Конечно, это наименование достаточно условно, но вполне применимо, если рассматривать какие функции выполняют липиды. Соединения не столько отапливают организм сколько удерживают тепло внутри. Подобная роль отведена жировым отложениям, формирующимся вокруг различных органов и в подкожной ткани. Этот класс липидов характеризуется высокими теплоизолирующими свойствами, что предохраняет жизненно-важные органы от переохлаждения.

«Золотой» запас индивидуума

Дополнительно, жировые отложения выполняют резервную функцию. Это фактически кладезь энергии, используемый организмом при необходимости, Как пример, голодание или интенсивные физические нагрузки. Весь механизм осуществляется при содействии адипоциты. Это специальные клетки, строение и функции которых тесно связаны с триглицеридами. Жир занимает подавляющий объем адипоцитов.

Такси заказывали?

Транспортную роль липидов относят к второстепенной функции. Действительно, перенос веществ (преимущественно триглицеридов и холестерина) осуществляется отдельными структурами. Это связанные комплексы липидов и белков, именуемые липопротеины. Как известно, жироподобные вещества нерастворимы в воде, соответственно плазме крови. Напротив, функции белков включают гидрофильность. Как результат, ядро липопротеида – скопление триглицеридов и эфиров холестерина, тогда как оболочка – смесь молекул протеина и свободного холестерола. В таком виде, липиды доставляются к тканям или обратно в печень для вывода из организма.

Второстепенные факторы

Список уже перечисленных 5 функций липидов, дополняет ряд не менее важных ролей:

  • ферментативная;
  • сигнальная;
  • регуляторная

Сигнальная функция

Некоторые сложные липиды, в частности их строение, позволяют передавать нервные импульсы между клетками. Посредником в подобном процесс выступают гликолипиды. Не менее важным оказывается способность распознавать внутриклеточные импульсы, также реализуемая жироподобными структурами. Это позволяет отбирать из крови необходимые клетке вещества.

Ферментативная функция

Липиды, независимо от расположения в мембране или вне ее – не входят в состав ферментов. Однако, их биоснтез происходит с присутствием жироподобных соединений. Дополнительно, липиды участвуют в выполнении защиты стенок кишечника от ферментов поджелудочной железы. Избыток последних нейтрализуется желчью, где в значительных количествах включены холестерин и фосфолипиды.

Регуляторная функция

Еще одна роль, которую для называют второстепенной. Не участвуя непосредственно в регулирующих процессах, липиды входят в состав соединений, осуществляющих подобные функции. В частности, это мембрана клетки, выполняющая пропускной режим. Другим примером выступают стероидные гормоны, регулирующие обмен веществ, репродуктивную способность, и иммунную защиту организма.

Перечень функций липидов не ограничивается рассмотренными случаями, но позволяет понять уровень важности веществ для человека.

Функции липидов.

Insert Flash

Запасающая – жиры, откладываются в запас в тканях позвоночных животных.

Энергетическая – половина энергии, потребляемой клетками позвоночных животных в состоянии покоя, образуется в результате окисления жиров. Жиры используются и как источник воды. Энергетический эффект от расщепления 1 г жира – 39 кДж, что в два раза больше энергетического эффекта от расщепления 1 г глюкозы или белка.
Защитная – подкожный жировой слой защищает организм от механических повреждений.
Структурная – фосфолипиды входят в состав клеточных мембран.
Теплоизоляционная – подкожный жир помогает сохранить тепло.
Электроизоляционная – миелин, выделяемый клетками Шванна (образуют оболочки нервных волокон), изолирует некоторые нейроны, что во много раз ускоряет передачу нервных импульсов.
Питательная – некоторые липидоподобные вещества способствуют наращиванию мышечной массы, поддержанию тонуса организма.
Смазывающая – воски покрывают кожу, шерсть, перья и предохраняют их от воды. Восковым налетом покрыты листья многих растений, воск используется в строительстве пчелиных сот.
Гормональная – гормон надпочечников – кортизон и половые гормоны имеют липидную природу.

Видео YouTube

ТЕМАТИЧЕСКИЕ ЗАДАНИЯ
Часть А

А1. Мономером полисахаридов может быть:
1) аминокислота
2) глюкоза
3) нуклеотид
4) целлюлоза
А2. В клетках животных запасным углеводом является:
1) целлюлоза
2) крахмал
3) хитин
4) гликоген
А3. Больше всего энергии выделится при расщеплении:
1) 10 г белка
2) 10 г глюкозы
3) 10 г жира
4) 10 г аминокислоты
А4. Какую из функций липиды не выполняют?
1) энергетическую
2)каталитическую
3) изоляционную
4) запасающую
А5. Липиды можно растворить в:
1) воде
2) растворе поваренной соли
3) соляной кислоте
4) ацетоне

Часть В

В1. Выберите особенности строения углеводов
1) состоят из остатков аминокислот
2) состоят из остатков глюкозы
3) состоят из атомов водорода, углерода и кислорода
4) некоторые молекулы имеют разветвленную структуру
5) состоят из остатков жирных кислот и глицерина
6) состоят из нуклеотидов
В2. Выберите функции, которые углеводы выполняют в организме
1) каталитическая
2) транспортная
3) сигнальная
4)строительная
5) защитная
6) энергетическая
ВЗ. Выберите функции, которые липиды выполняют в клетке
1) структурная
2) энергетическая
3) запасающая
4) ферментативная
5) сигнальная
6) транспортная
В4. Соотнесите группу химических соединений с их ролью в клетке:

РОЛЬ СОЕДИНЕНИЯ В КЛЕТКЕ

СОЕДИНЕНИЕ

А) быстро расщепляются с выделением энергии
Б) являются основным запасным веществом растений и животных
В) являются источником для синтеза гормонов
Г) образуют теплоизолирующий слой у животных
Д) являются источником дополнительной воды у верблюдов
Е) входят в состав покровов насекомых

1) углеводы
2) липиды

Часть С

С1. Почему в организме не накапливается глюкоза, а накапливается крахмал и гликоген?

Тест 2

Часть 1 содержит 10 заданий (А1-10). К каждому заданию приводится 4 варианта ответа, один из которых верный.

Часть 1

А 1. Моносахарид, в молекуле которого содержится пять атомов углерода

1. глюкоза

2. фруктоза

3. галактоза

4. дезоксирибоза

А 2. Химическая связь, соединяющая остатки глицерина и высших жирных кислот в молекуле жира

1. ковалентная полярная

2. ковалентная неполярная

3. ионная

4. водородная

А 3. Мономером крахмала и целлюлозы является

1. глюкоза

2. глицерин

3. нуклеотид

4. аминокислота

А 4. В каком из веществ растворятся липиды

1. вода

2. ацетон

3. физиологический раствор

4. соляная кислота

А 5. Зимостойкость растений повышается при накоплении в клетках:

1. крахмала

2. жиров

3. сахаров

4. минеральных солей

А 6. В каких продуктах содержится наибольшее количество углеводов, необходимых человеку?

1. в сыре и твороге

2. хлебе и картофеле

3. мясе и рыбе

4. растительном масле

А 7. Конечными продуктами гликогена в клетке являются

1. АТФ и вода

2. кислород и углекислый газ

3. вода и углекислый газ

4. АТФ и кислород

А 8. Запасным углеводом в животной клетке является

1. крахмал

2. гликоген

3. целлюлоза

4. хитин

А 9. Сок, не содержащий ферментов, но облегчающий всасывание жиров в тонком кишечнике

1. желудочный сок

2. поджелудочный сок

3. кишечный сок

4. желч

А 10. У человека углеводы пищи начинают перевариваться в

1. двенадцатипёрстной кишке

2. ротовой полости

3. желудке

4. толстом кишечнике

Часть 2 содержит 8 заданий (В1-В8): 3 – с выбором трёх верных ответов из шести, 3 – на соответствие, 2 – на установление последовательности биологических процессов, явлений, объектов.

Часть 2

В 1. Липиды, встречающиеся только у животных

1. холестерин

2. липопротеиды

3. триглицериды

4. фосфолипиды

5. желчные кислоты

6. тестостерон

В 2. Моносахаридами являются

1. рибоза

2. сахароза

3. лактоза

4. глюкоза

5. мальтоза

6. галактоза

В3. Сложные органические соединения, в молекулу которых входит углеводный компонент

1. рибонуклеотиды

2. фосфолипиды

3. дезоксирибонуклеотиды

4. аминокислоты

5. аденозинтрифосфат

6. холестерин

В 4. Формы углеводов в растительных и животных клетках

Клетка Углевод

А) растительные клетки 1. гликоген

Б) животные клетки 2. крахмал

3. целлюлоза

4. гепарин

В 5. Установите соответствие между характеристикой и органическим веществом

Характеристика Органическое вещество

1. Состоят из углерода, водорода и кислорода А. Углеводы

2. Низкая теплопроводность Б. Жиры

3. Образуют биополимеры – полисахариды

4. Обеспечивают взаимодействие клеток одного типа

5. Все они не полярны

6. Практически не растворимы в воде

В 6. Установите соответствие между углеводом и группой углеводов, к которой они относятся

Название углевода Группа углеводов

1.Глюкоза А. моносахариды

2. Сахароза Б. Дисахариды

3. Галактоза В. Полисахариды

4. Крахмал

5. Мальтоза

6. Лактоза

В 7. Расположите моносахариды в порядке возрастания числа атомов углерода в их молекуле

1. диоксиацетон (кетоза)

2. глюкоза

3. элитроза треоза

4. рибоза

5. глюкозамин

6. рамно-О

В 8. Расположите жиры в порядке возрастания атомов углерода в их молекуле

1. трипальмитин

2. тристеарин

3. трилаурин

4. трикаприлин

5. тримиристин

Часть 3 содержит 6 заданий. На задание С 1 дайте краткий свободный ответ, а на задания С2-С6 – полный развёрнутый ответ.

Часть 3

С 1. Какую роль для живых организмов играют фосфолипиды и гликолипиды?

С 2. Укажите номера предложений, в которых допущены ошибки. Объясните их.

1. Углеводы представляют собой соединения углерода и водорода.

2. Различают три класса углеводов – моносахариды, дисахариды и полисахариды.

3. Наиболее распространённые моносахариды – сахароза и лактоза.

4. Они растворимы в воде и обладают сладким вкусом.

5. При расщеплении 1 г. глюкозы выделяется 35,2 кДЖ энергии

С 3. Каковы функции углеводов в растительных клетках?

С 4. Объясните, почему запасающую функцию выполняют полисахариды, а не моносахариды?

Ответы:

Часть 1

А1-4 А6-2

А2-1 А7-3

А3-1 А8-2

А4-2 А9-4

А5-3 А10-2

Часть 2

В1-1 3 4

В2-1 4 6

В3-1 3 5

В4 -А 2 3, Б 1 4

В5-А 1 3 4, Б 2 5 6

В6-А1 3, Б 2 5 6, В 4

В7-1 3 4 2 5 6

В8-4 3 5 1 2

Часть 3

С 1. Фосфолипиды и гликолипиды являются компонентами клеточных мембран.

С 2. 1. углерода и воды.

3. дисахариды.

5. 17,6 кДЖ

С 3. 1. Моносахариды и дисахариды выполняют энергетическую функцию.

2. Крахмал – запасное питательное вещество.

3. Целлюлоза входит в состав клеточных стенок.

С 4. 1. Так как полисахариды не растворимы в воде, они не оказывают осмотического и химического действия на клетку.

2. В твёрдом и обезвоженном состоянии имеют меньший объём и большую полезную массу.

3. Менее доступны для болезнетворных бактерий и грибов, так как эти организмы пищу всасывают, а не заглатывают.

4. При необходимости легко превращаются в моносахариды.

aa-ivanovo.ru

§ 4. Классификация и функции липидов

Глава II. ЛИПИДЫ

§ 4. КЛАССИФИКАЦИЯ И ФУНКЦИИ ЛИПИДОВ

Липиды представляют собой неоднородную группу химических соединений, нерастворимых в воде, но хорошо растворимых в неполярных органических растворителях: хлороформе, эфире, ацетоне, бензоле и др., т.е. общим их свойством является  гидрофобность (гидро – вода, фобия – боязнь). Из-за большого разнообразия липидов дать более точное определение им невозможно. Липиды в большинстве случаев являются сложными эфирами жирных кислот и какого-либо спирта. Выделяют следующие классы липидов: триацилглицерины, или жиры, фосфолипиды, гликолипиды, стероиды, воска, терпены. Различают две категории липидов – омыляемые и неомыляемые. К омыляемым относятся вещества, содержащие сложноэфирную связь (воска, триацилглицерины, фосфолипиды и др.). К неомыляемым относятся стероиды, терпены.

 

Триацилглицерины, или жиры

Триацилглицерины являются сложными эфирами трехатомного спирта глицерина

и жирных (высших карбоновых) кислот. Общая формула  жирных кислот имеет вид: R-COOH, где R – углеводородный радикал. Природные жирные кислоты содержат от 4 до 24 атомов углерода. В качестве примера приведем формулу одной из наиболее распространенной в жирах стеариновой кислоты:

CH3-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-COOH

В общем виде молекулу триацилгицерина можно записать так:

Если в состав триациоглицерина входят остатки различных кислот (R R2  R3), то центральный атом углерода в остатке глицерина становится хиральным.

Триацилглицерины неполярны и вследствие этого практически нерастворимы в воде. Основная функция триацилглицеринов – запасание энергии. При окислении1 гжира выделяется 39 кДж энергии. Триацилглицерины накапливаются в жировой ткани, которая, кроме депонирования жира, выполняет термоизолирующую функцию и  защищает органы от механических повреждений.  Более подробную информацию о жирах и жирных кислотах вы найдете в следующем параграфе. 

 

Интересно знать! Жир, которым заполнен горб верблюда, служит, в первую очередь, не источником энергии, а источником воды, образующейся при его окислении.


Фосфолипиды

Фосфолипиды содержат  гидрофобную и гидрофильную области и поэтому обладают амфифильнымы свойствами, т.е. они способны растворяться в неполярных растворителях и образовывать стойкие эмульсии с водой.

Фосфолипиды в зависимости от наличия в их составе спиртов глицерина и сфингозина делятся на глицерофосфолипиды и сфингофосфолипиды.

 

Глицерофосфолипиды

В основе строения молекулы глицерофосфолипидов лежит фосфатидная кислота, образованная глицерином, двумя жирными и фосфорной кислотами:

В молекулах глицерофосфолипидов к фосфатидной кислоте сложноэфирной связью присоединена НО-содержащая полярная молекула. Формулу глицерофосфолипидов можно представить так:

где Х – остаток НО-содержащей полярной молекулы (полярная группировка). Названия фосфолипидов образуются в зависимости от наличия в их составе той или иной полярной группировки. Глицерофосфолипиды, содержащие в качестве полярной группировки остаток этаноламина, 

HO-CH2-CH2-NH2

носят название фосфатидилэтаноламинов, остаток холина 

– фосфатидилхолинов, серина 

– фосфатидилсеринов. 

Формула фосфатидилэтаноламина выглядит так:

Глицерофосфолипиды отличаются друг от друга не только полярными группами, но и остатками жирных кислот. В их состав входят как насыщенные (состоящие обычно из 16 – 18  атомов углерода), так и ненасыщенные (содержащие чаще 16 – 18  атомов углерода и 1 – 4  двойные связи) жирные кислоты.

Сфингофосфолипиды

Сфингофосфолипиды по составу сходны с глицерофосфолипидами, но вместо глицерина содержат аминоспирт сфингозин:

или дигидросфингазин:

Наиболее распространенными сфингофосфолипидами являются сфингомиелины. Они образованы сфингозином, холином, жирной кислотой и фосфорной кислотой:

Молекулы как глицерофосфолипидов,  так и сфингофосфолипидов состоят из полярной головы (образована фосфорной кислотой и полярной группировкой) и двух углеводородных неполярных хвостов (рис.1). У глицерофосфолипидов оба неполярных хвоста являются радикалами жирных кислот, у сфингофосфолипидов – один хвост является радикалом жирной кислоты, другой – углеводородной цепочкой спирта сфингазина. 

Рис. 1. Схематическое изображение молекулы фосфолипида.

При встряхивании в воде фосфолипиды спонтанно формируют мицеллы, в которых неполярные хвосты собираются внутри частицы, а полярные головы располагаются на ее поверхности, взаимодействуя с молекулами воды (рис. 2а). Фосфолипиды способны образовывать также  бислои (рис. 2б) и липосомы – замкнутые пузырьки, окруженные непрерывным бислоем (рис. 2в).

Рис. 2. Структуры, образуемые фосфолипидами.

Способность фосфолипидов, образовывать бислой, лежит в основе формирования клеточных мембран. 

 

Гликолипиды

Гликолипиды содержат в своем составе углеводный компонент. К ним относятся гликосфинголипиды, содержащие, кроме углевода спирт, сфингозин и остаток жирной кислоты:

Они так же, как и фосфолипиды, состоят из полярной головы и двух неполярных хвостов. Гликолипиды располагаются на внешнем слое мембраны, являются составной частью рецепторов, обеспечивают взаимодействие клеток. Их особенно много в нервной ткани.

 

Стероиды

Стероиды являются производными циклопентанпергидрофенантрена (рис. 3). Один из важнейших представителей стероидов – холестерин. В организме он встречается как в свободном состоянии, так и в связанном, образуя сложные эфиры с жирными кислотами (рис. 3). В свободном виде холестерин входит в состав мембран и липопротеинов крови. Сложные эфиры холестерина являются его запасной формой. Холестерин является предшественником всех остальных стероидов: половых гормонов (тестостерон, эстрадиол и др.), гормонов коры надпочечников (кортикостерон и др.), желчных кислот (дезоксихолевая и др.), витамина D (рис. 3).

Интересно знать! В организме взрослого человека содержится около 140 г холестерина, больше всего его находится в нервной ткани и надпочечниках. Ежедневно в организм человека поступает 0,3 – 0,5 г холестерина, а синтезируется  – до 1 г.

 

 

Воска

Воска – это сложные эфиры, образованные длинноцепочечными жирными кислотами (число атомов углерода 14 – 36) и длинноцепочечными одноатомными спиртами (число атомов углерода 16 – 22). В качестве примера рассмотрим формулу воска, образованного олеиновым спиртом и олеиновой кислотой:

Воска выполняют главным образом защитную функцию, находясь на поверхности листьев, стеблей, плодов, семян они защищают ткани от высыхания и проникновения микробов. Они покрывают шерсть и перья животных и птиц, предохраняя их от намокания. Пчелиный воск служит строительным материалом для пчел при создании сот. У планктона воск служит основной формой запасания энергии.

 

Терпены

В основе терпеновых соединений лежат изопреновые остатки:

К терпенам относятся эфирные масла, смоляные кислоты, каучук, каротины, витамин А, сквален. В качестве примера приведем формулу сквалена: 

Сквален является основным компонентом секрета сальных желез.

ebooks.grsu.by

Липидный обмен — Википедия

Липидный обмен, или метаболизм липидов — сложный биохимический и физиологический процесс, происходящий в некоторых клетках живых организмов.

Липидный обмен включает в себя следующие процессы:

Термин «липиды» объединяет вещества, обладающие общим физическим свойством — гидрофобностью, то есть нерастворимостью в воде. Однако такое определение в настоящее время является не совсем корректным ввиду, того, что некоторые группы (триацилглицерины, фосфолипиды, сфинголипиды и др.) проявляют себя как амфифильные или дифильные соединения, то есть способные растворяться как в полярных веществах (гидрофильность), так и в неполярных (гидрофобность). По структуре липиды настолько разнообразны, что у них отсутствует общий признак химического строения. Липиды разделяют на классы, в которые объединяют молекулы, имеющие сходное химическое строение и общие биологические свойства.

Основную массу липидов в организме составляют жиры — триацилглицеролы, служащие формой депонирования энергии. Жиры располагаются преимущественно в подкожной жировой ткани и выполняют также функции теплоизоляционной и механической защиты.

Фосфолипиды — большой класс липидов, получивший своё название из-за остатка фосфорной кислоты, придающего им свойства амфифильности. Благодаря этому свойству фосфолипиды формируют бислойную структуру мембран, в которую погружены белки. Клетки или отделы клеток, окружённые мембранами, отличаются по составу и набору молекул от окружающей среды, поэтому химические процессы в клетке разделены и ориентированы в пространстве, что необходимо для регуляции метаболизма.

Стероиды, представленные в животном мире холестеролом и его производными, выполняют разнообразные функции. Холестерол — важный компонент мембран и регулятор свойств гидрофобного слоя. Производные холестерола (жёлчные кислоты) необходимы для переваривания жиров. Стероидные гормоны, синтезируемые из холестерола, участвуют в регуляции энергетического, водно-солевого обменов, половых функций. Кроме стероидных гормонов, многие производные липидов выполняют регуляторные функции и действуют, как и гормоны, в очень низких концентрациях. Например, тромбоцитактивирующий фактор — фосфолипид особой структуры — оказывает сильное влияние на агрегацию тромбоцитов в концентрации 10-12 М; эйкозаноиды, производные полиеновых жирных кислот, вырабатываемые почти всеми типами клеток, вызывают разнообразные биологические эффекты в концентрациях не более 10-9 М. Из приведённых примеров следует, что липиды обладают широким спектром биологических функций.

В тканях человека количество разных классов липидов существенно различается. В жировой ткани жиры составляют до 75 % сухого веса. В нервной ткани липидов содержится до 50 % сухого веса, основные из них фосфолипиды и сфингомиелины (30 %), холестерол (10 %), ганглиозиды и цереброзиды (7 %). В печени общее количество липидов в норме не превышает 10—13 %.

Нарушения обмена липидов приводят к развитию многих заболеваний, но среди людей наиболее распространены два из них — ожирение и атеросклероз.

Расщепление, переваривание и всасывание пищевых липидов[править | править код]

Суточная потребность человека в жирах составляет 70—80 г, хотя в пищевом рационе их содержание может колебаться от 80 до 130 г.

Переваривание липидов в желудке[править | править код]

В желудке имеется фермент липаза, способный катализировать расщепление триацилглицеролов. Однако оптимальной средой её действия является среда, близкая к нейтральной. Поэтому липаза в желудке у взрослых людей практически неактивна из-за малых значений pH.

Однако у детей ситуация обстоит несколько по-другому: желудок детей имеет при рождении среду, близкую к нейтральной (pH (среднее) = 5,5). Это явление обусловлено основным продуктом питания детей — молоком (содержит белки и жирных кислоты (количество углерода меньше 14)). Так, фермент липаза выполняет ключевую роль в метаболизме липидов у детей[источник не указан 320 дней].

Переваривание липидов в кишечнике[править | править код]

В двенадцатиперстной кишке пища подвергается действию желчи и сока поджелудочной железы. На первом этапе там происходит эмульгирование жиров.

Эмульгирование жиров[править | править код]

Жиры составляют до 90 % липидов, поступающих с пищей. Переваривание жиров происходит в тонком кишечнике, однако уже в желудке небольшая часть жиров гидролизуется под действием «липазы языка» (лингвальная (лат. lingua — язык) липаза). Этот фермент синтезируется железами на дорсальной поверхности языка и относительно устойчив при кислых значениях рН желудочного сока. Поэтому он действует в течение 1—2 ч на жиры пищи в желудке. Однако вклад этой липазы в переваривание жиров у взрослых людей незначителен. Основной процесс переваривания происходит в тонкой кишке.

Так как жиры — нерастворимые в воде соединения, то они могут подвергаться действию ферментов, растворённых в воде только на границе раздела фаз вода/жир. Поэтому действию панкреатической липазы, гидролизующей жиры, предшествует эмульгирование жиров. Эмульгирование (смешивание жира с водой) происходит в тонком кишечнике под действием солей жёлчных кислот. Жёлчные кислоты в основном конъюгированные: таурохолевая, гликохолевая и другие кислоты.

Гормоны, активирующие переваривание жиров[править | править код]

При поступлении пищи в желудок, а затем в кишечник клетки слизистой оболочки тонкого кишечника начинают секретировать в кровь пептидный гормон холецистокинин (панкреозимин). Этот гормон действует на жёлчный пузырь, стимулируя его сокращение, и на экзокринные клетки поджелудочной железы, стимулируя секрецию пищеварительных ферментов, в том числе панкреатической липазы. Другие клетки слизистой оболочки тонкого кишечника в ответ на поступление из желудка кислого содержимого выделяют гормон секретин. Секретин — гормон пептидной природы, стимулирующий секрецию гидрокарбоната (НСО3-) в сок поджелудочной железы.

Нарушения переваривания и всасывания жиров[править | править код]

Нарушение переваривания жиров может быть следствием нескольких причин. Одна из них — нарушение секреции жёлчи из жёлчного пузыря при механическом препятствии оттоку жёлчи. Это состояние может быть результатом сужения просвета жёлчного протока камнями, образующимися в жёлчном пузыре, или сдавлением жёлчного протока опухолью, развивающейся в окружающих тканях. Уменьшение секреции жёлчи приводит к нарушению эмульгирования пищевых жиров и, следовательно, к снижению способности панкреатической липазы гидролизовать жиры.

Нарушение секреции сока поджелудочной железы и, следовательно, недостаточная секреция панкреатической липазы также приводят к снижению скорости гидролиза жиров. В обоих случаях нарушение переваривания и всасывания жиров приводит к увеличению количества жиров в фекалиях — возникает стеаторея (жирный стул). В норме содержание жиров в фекалиях составляет не более 5 %. При стеаторее нарушается всасывание жирорастворимых витаминов (A, D, E, К) и незаменимых жирных кислот, поэтому при длительно текущей стеаторее развивается недостаточность этих незаменимых факторов питания с соответствующими клиническими симптомами. При нарушении переваривания жиров плохо перевариваются и вещества нелипидной природы, так как жир обволакивает частицы пищи и препятствует действию на них ферментов.

Всасывание липидов в кишечнике[править | править код]

Ресинтез жиров в слизистой оболочке тонкого кишечника[править | править код]

Основная часть всосавшихся в тонком кишечнике липидов принимает участие в ресинтезе триацилглицеринов. Для этого в эндоплазматическом ретикулуме энтероцитов работают специальные ферменты

Факторы, влияющие на всасывание липидов[править | править код]

Катаболизм липидов[править | править код]

Катаболизм липидов — совокупность всех катаболических процессов липидов, включающая несколько стадий:

Липолиз[править | править код]

Липолиз — катаболический процесс, результатом которого является расщепление жиров, происходящее под действием фермента липазы.

β-Окисление жирных кислот[править | править код]

Процесс β-окисления высших жирных кислот (ВЖК) складывается из следующих этапов:

  • активация ВЖК на наружной поверхности мембраны митохондрий при участии АТФ, кофермента А и ионов магния с образованием активной формы ВЖК (ацил — КоА).
  • транспорт жирных кислот внутрь митохондрий возможен при присоединении активной формы жирной кислоты к карнитину, находящемуся на наружной поверхности внутренней мембраны митохондрий. Образуется ацил-карнитин, обладающий способностью проходить через мембрану. На внутренней поверхности комплекс распадается и карнитин возвращается на наружную поверхность мембраны.
  • внутримитохондриальное окисление жирных кислот состоит из последовательных ферментативных реакций. В результате одного завершенного цикла окисления происходит отщепление от жирной кислоты одной молекулы ацетил-КоА, то есть укорочение жирнокислотной цепи на два углеродных атома. При этом в результате двух дегидрогеназных реакций восстанавливается ФАД до ФАДН2 и НАД+ до НАДН2. Таким образом завершая 1 цикл β—окисления ВЖК, в результате которого ВЖК укоротилось на 2 углеродных звена. При β-окислении выделилось 5АТФ и 12АТФ выделилось при окислении ацетил-КоА в цикле Кребса и сопряженных с ним ферментов дыхательной цепи. Окисление ВЖК будет происходить циклически одинаково, но только до последней стадии — стадии превращения масляной кислоты (бутирил-КоА), которая имеет свои особенности, которые необходимо учитывать при подсчёте суммарного энергетического эффекта окисления ВЖК, когда в результате одного цикла образуется 2 молекулы ацетил-КоА, одна из них проходила β-окисление с выделением 5АТФ, а другая нет.

ω-Окисление жирных кислот[править | править код]

Хотя для жирных кислот наиболее характерно β-окисление, встречаются также два других типа окисления: α-и ω-окисления. Окисление жирных кислот с длинной цепью до 2-оксикислот и затем до жирных кислот с числом атомов углерода на один меньше, чем в исходном субстрате, было показано в микросомах мозга и других тканях, а также в растениях. 2-Оксикислоты с длинной цепью являются компонентами липидов мозга.

Окисление ненасыщенных жирных кислот[править | править код]

Около половины жирных кислот в организме человека ненасыщенные. β-Окисление этих кислот идёт обычным путём до тех пор, пока двойная связь не окажется между третьим и четвёртым атомами углерода. Затем фермент еноил-КоА изомераза перемещает двойную связь из положения 3-4 в положение 2-3 и изменяет цис-конформацию двойной связи на транс-, которая требуется для β-окисления. В этом цикле β-окисления первая реакция дегидрирования не происходит, так как двойная связь в радикале жирной кислоты уже имеется. Далее циклы β-окисления продолжаются, не отличаясь от обычного пути.

Нарушения окисления жирных кислот[править | править код]

Нарушение переноса жирных кислот в митохондрии.

Скорость переноса жирных кислот внутрь митохондрий, а следовательно и скорость процесса β-окисления, зависит от доступности карнитина и скорости работы фермента карнитинацилтрансферазы I.

β-Окисление могут нарушать следующие факторы:

  • длительный гемодиализ, в ходе которого организм теряет карнитин;
  • длительная ацидурия, при которой карнитин выводится как основание с органическими кислотами;
  • лечение больных сахарным диабетом препаратами сульфонилмочевины, ингибирующими карнитинацилтрансферазу I;
  • низкая активность ферментов, синтезирующих карнитин;
  • наследственные дефекты карнитинацил-трансферазы I.

При длительном голодании кетоновые тела становятся основным источником энергии для скелетных мышц, сердца и почек. Таким образом глюкоза сохраняется для окисления в мозге и эритроцитах. Уже через 2-3 дня после начала голодания концентрация кетоновых тел в крови достаточна для того, чтобы они проходили в клетки мозга и окислялись, снижая его потребности в глюкозе.

Кислород, необходимый организму для функционирования ЦПЭ и многих других реакций, является одновременно и токсическим веществом, если из него образуются так называемые активные формы.

К активным формам кислорода относят:

Липогенез[править | править код]

Липогенез — процесс синтеза жирных кислот, основным источником которого является углеводы.

С пищей в организм поступают разнообразные жирные кислоты, в том числе и незаменимые. Значительная часть заменимых жирных кислот синтезируется в печени, в меньшей степени — в жировой ткани и лактирующей молочной железе. Источником углерода для синтеза жирных кислот служит ацетил-КоА, образующийся при распаде глюкозы в абсорбтивном периоде. Таким образом, избыток углеводов, поступающих в организм, трансформируется в жирные кислоты, а затем в жиры.

Синтез кетоновых тел[править | править код]

Все кетоновые тела берут начало от ацетоацетил-КоА, который образуется при конденсации 2-х молекул ацетил-КоА по принципу «голова в хвост». Реакция конденсации происходит в митохондриях. В печени ацетоацетил-КоА взаимодействует ещё с одной молекулой ацетил-КоА и превращается в ГОМГ-КоА- важное промежуточное вещество для синтеза холестерола и стероидов.

Организм получает жирные кислоты из пищи и путём липогенеза из ацетил-КоА, образующегося из углеводов и некоторых аминокислот. Состав смеси жирных кислот пищи существенно варьирует по степени ненасыщенности и длине цепи. Липогенез у высших животных включает только образование пальмитата, из которого образуются другие насыщенные и мононенасыщенные кислоты. Из смеси имеющихся жирных кислот в печени животного образуется свойственный данному виду набор жирных кислот; однако на характере синтезируемых жирных кислот сказывается также и диета. Процессы утилизации жирных кислот пищи включают укорочение и удлинение углеродного скелета, так же как и введение двойной связи.

Фосфолипиды выполняют ряд важных биологических функций. Как большинство полярных липидов, они являются амфифильными соединениями, несущими гидрофобные и гидрофильные группы. Некоторые фосфолипиды, например фосфатидилхолин, представляют собой диполярные ионы, обладающие катионной и анионной группами, и являются основными компонентами клеточных мембранных систем. Например, в миелиновом волокне нерва фосфолипиды и цереброзиды составляют приблизительно 60 % сухого веса.

Распределение и обмен[править | править код]

Среди липидов тела фосфолипиды распределены неравномерно. Богатыми источниками фосфолипидов являются липиды тканей различных желез, в особенности печени, а также плазма крови, где они могут составлять до половины всех липидов. Фосфолипиды являются также преобладающими липидами в желтках птичьих яиц и в семенах бобовых растений. Обмен различных фосфолипидов в определённых местах животного организма изучали с использованием различных изотопов, наиболее часто 32Р. Период полупревращения этих липидов колеблется от менее одного дня для фосфатидилхолина печени до более 200 сут для фосфатидилэтаноламина мозга.

Образование[править | править код]

Холестерол — основной стероид организма животных. У взрослого человека содержание холестерола составляет 140—150 г. Около 93 % стероида входит в состав мембран и 7 % находится в жидкостях организма. Холестерол увеличивает микровязкость мембран и снижает их проницаемость для Н2О и водорастворимых веществ. В крови он представлен в виде свободного холестерола, входящего в оболочку липопротеинов, и его эфиров, которые вместе с ТАГ составляют внутреннее содержимое этих частиц. Содержание холестерола и его эфиров в составе хиломикронов составляет ~ 5 %, в ЛПОНП ~10 %, в ЛПНП ~ 50—60 % и в ЛПВП ~ 20—30 %. Концентрация холестерола в сыворотке крови взрослого человека в норме равна ~ 200 мг/дл или 5,2 ммоль/л, что соответствует холестериновому равновесию, когда количество холестерола, поступающего в организм, равно количеству холестерола выводимому из организма. Если концентрация холестерола в крови выше нормы, то это указывает на задержку его в организме и является фактором риска развития атеросклероза.

Холестерол является предшественником всех стероидов животного организма:

Холестериновое равновесие поддерживается благодаря тому, что с одной стороны холестерол поступает с пищей (~ 0,3—0,5 г/с) и синтезируется в печени или других тканях (~ 0,5 г/с), а с другой — выводится с калом в виде жёлчных кислот, холестерола желчи, продуктов катаболизма стероидных гормонов, с кожным салом, в составе мембран слущенного эпителия (~ 1,0 г/с)

Биосинтез холестерола[править | править код]

Транспорт холестерола[править | править код]

Эйкозаноиды, включающие в себя простагландины, тромбоксаны, лейкотриены и ряд других веществ, — высокоактивные регуляторы клеточных функций. Они имеют очень короткий Т1/2, поэтому оказывают эффекты как «гормоны местного действия», влияя на метаболизм продуцирующей их клетки по аутокринному механизму, и на окружающие клетки — по паракринному механизму. Эйкозаноиды участвуют во многих процессах: регулируют тонус гладкомышечных клеток и вследствие этого влияют на АД, состояние бронхов, кишечника, матки. Эйкозаноиды регулируют секрецию воды и натрия почками, влияют на образование тромбов. Разные типы эйкозаноидов участвуют в развитии воспалительного процесса, происходящего после повреждения тканей или инфекции. Такие признаки воспаления, как боль, отёк, лихорадка, в значительной мере обусловлены действием эйкозаноидов. Избыточная секреция эйкозаноидов приводит к ряду заболеваний, например, бронхиальной астме и аллергическим реакциям.

Субстраты для синтеза эйкозаноидов[править | править код]

Основным субстратом для синтеза эйкозаноидов является арахидоновая (ω-6-эйкозатетраеновая) кислота, содержащая 4 двойные связи при углеродных атомах (5, 8, 11, 14). Она может поступать с пищей или синтезироваться из линолевой кислоты. В небольших количествах для синтеза эйкозаноидов могут использоваться ω-6-эйкозатриеновая кислота с тремя двойными связями (5, 8, 11) и ω-3-эйкозапентаеновая кислота, в составе которой имеется 5 двойных связей в положениях 5, 8, 11, 14, 17. Обе минорные эйкозановые кислоты либо поступают с пищей, либо синтезируются из олеиновой и линоленовой кислот соответственно.

Синтез лейкотриенов, ГЭТЕ(гидроксиэйкозатетроеноатов), липоксинов[править | править код]

Синтез лейкотриенов идёт по пути, отличному от пути синтеза простагландинов, и начинается с образования гидроксипероксидов — гидропероксидэйкозатетраеноатов (ГПЭТЕ). Эти вещества или восстанавливаются с образованием гидроксиэйкозатетроеноатов (ГЭТЕ) или превращаются в лейкотриены или липоксины. ГЭТЕ отличаются по положению гидроксильной группы у 5-го, 12-го или 15-го атома углерода, например: 5-ГЭТЕ, 12-ГЭТЕ.

Липоксины (например, основной липоксин А4) включают 4 сопряжённых двойных связи и 3 гидроксильных группы.

Синтез липоксинов начинается с действия на арахидоновую кислоту 15-липоксигеназы, затем происходит ряд реакций, приводящих к образованию липоксина А4

Клинические аспекты обмена эйкозаноидов[править | править код]

Медленно реагирующая субстанция при анафилаксии (МРВ-А) представляет собой смесь лейкотриенов С4, D4 и Е4. Эта смесь в 100—1000 раз более эффективна, чем гистамин или простагландины как фактор, вызывающий сокращение гладкой мускулатуры бронхов. Эти лейкотриены вместе с лейкотрином В4 повышают проницаемость кровеносных сосудов и вызывают приток и активацию лейкоцитов, а также, являются важными регуляторами при многих заболеваниях, в развитии которых участвуют воспалительные процессы или быстрые аллергические реакции (например, при бронхиальной астме).

Использование производных эйкозаноидов в качестве лекарственных средств[править | править код]

Хотя действие всех типов эйкозаноидов до конца не изучено, имеются примеры успешного использования лекарств — аналогов эйкозаноидов для лечения различных заболеваний. Например, аналоги PG Е1 и PG Е2 подавляют секрецию соляной кислоты в желудке, блокируя гистаминовые рецепторы II типа в клетках слизистой оболочки желудка. Эти лекарства, известные как Н2-блокаторы, ускоряют заживление язв желудка и двенадцатиперстной кишки. Способность PG Е2 и PG F2α стимулировать сокращение мускулатуры матки используют для стимуляции родовой деятельности.

Сфинголипиды — производные церамида, образующегося в результате соединения аминоспирта сфингозина и жирной кислоты. В группу сфинголипидов входят сфингомиелины и гликосфинголипиды.

Сфингомиелины находятся в мембранах клеток различных тканей, но наибольшее их количество содержится в нервной ткани. Сфингомиелины миелиновых оболочек содержат в основном жирные кислоты с длинной цепью: лигноцериновую и нервоновую кислоты, а сфингомиелин серого вещества мозга содержит преимущественно стеариновую кислоту.

Синтез церамида и его производных[править | править код]

Катаболизм сфингомиелина и его нарушения[править | править код]

В лизосомах находятся ферменты, способные гидролизовать любые компоненты клеток. Эти ферменты называют кислыми гидролазами, так как они активны в кислой среде.

В условиях положительного калорийного баланса значительная часть потенциальной энергии пищевых продуктов запасается в виде энергии гликогена или жира. Во многих тканях даже при нормальном питании, не говоря уже о состояниях калорийного дефицита или голодания, окисляются преимущественно жирные кислоты, а не глюкоза. Причина этого — необходимость сохранения глюкозы для тех тканей (например, для мозга или эритроцитов), которые постоянно в ней нуждаются. Следовательно, регуляторные механизмы, часто с участием гормонов, должны обеспечивать постоянное снабжение всех тканей подходящим топливом в условиях как нормального питания, так и голодания. Сбой в этих механизмах происходит при гормональном дисбалансе (например, в условиях недостатка инсулина при диабете), при нарушении метаболизма в период интенсивной лактации (например, при кетозе крупного рогатого скота) или из-за усиления обменных процессов при беременности (например, при токсикозе беременности у овец). Такие состояния представляют собой патологические отклонения при синдроме голодания; он наблюдается при многих заболеваниях, сопровождающихся снижением аппетита.

Тучность[править | править код]

Абеталипопротеинемия[править | править код]

Это относительно редкое генетическое заболевание характеризуется отсутствием в плазме β-липопротеидов плотности, меньшей чем 1,063 и связано с интенсивной демиелинизацией нервных волокон. Апо-В отсутствует в плазме, так же как и в хиломикронах, ЛПОНП и ЛПНП. Уровень триацилглицеринов и холестерина плазмы очень низок. Это свидетельствует о необходимости апо-В для нормального всасывания, синтеза и транспорта триацилглицеринов и холестерина из кишечника и печени. Липиды накапливаются в клетках слизистой оболочки кишечных ворсинок, при этом наблюдается акантоцитоз — сферическая деформация эритроцитов. Более 80 % эритроцитов являются акантоцитами, или, как их иначе называют, зубчатыми эритроцитами (от греч. akantha — зубец, шип).

Кахексия[править | править код]

Недостаточное потребление калорий может привести и к полному исчезновению жировой ткани из подкожного и сальникового депо. Это может происходить при опухолях или хроническом инфекционном заболевании, при недостаточном питании или при метаболических нарушениях, таких, как диабет или увеличение щитовидной железы. В экспериментах было показано, что повреждение определённых областей гипоталамуса вызывает анорексию даже у предварительно голодавшего животного. Для анорексии, в происхождении которой имеет значение психогенный компонент, используют термин «anorexia nervosa» (нейрогенная анорексия).

В то время как потеря липидов тела при болезни щитовидной железы связана частично с избыточной мобилизацией резервных липидов, существенной причиной кахексии при голодании, недостаточности тиамина или диабете является сниженная способность организма синтезировать жирные кислоты из углеводных предшественников.

Атеросклероз[править | править код]

Атеросклероз (от греч. ἀθέρος — мякина, кашица + σκληρός — твёрдый, плотный) — хроническое заболевание артерий эластического и мышечно-эластического типа, возникающее вследствие нарушения липидного обмена и сопровождающееся отложением холестерина и некоторых фракций липопротеидов в интиме сосудов. Отложения формируются в виде атероматозных бляшек. Последующее разрастание в них соединительной ткани (склероз), и кальциноз стенки сосуда приводят к деформации и сужению просвета вплоть до облитерации (закупорки). Важно различать атеросклероз от артериосклероза Менкеберга, другой формы склеротических поражений артерий, для которой характерно отложение солей кальция в средней оболочке артерий, диффузность поражения (отсутствие бляшек), развитие аневризм (а не закупорки) сосудов. Атеросклероз сосудов ведет к развитию ишемической болезни сердца.

Молекулярные механизмы патогенеза атеросклероза[править | править код]

Таганович и др. Биологическая химия. — Минск: Высшая школа, 2013. — ISBN 978-985-06-2321-8.

ru.wikipedia.org

нейтральных жиров, стеринов и стеридов, восков.



Обратная связь

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

ГБОУ ВПО ОмГМА Минздрава России, колледж

ПМ.03 Проведение лабораторных биохимических исследований

Лекция №6

Тема Химия липидов

Цели:Изучение классификации, структуры, свойств, функций липидов.

План лекции

1. Функции липидов. Классификация липидов по строению.

2. Структура, свойства, функции простых липидов: нейтральных жиров, стеринов и стеридов, восков.

3. Структура, свойства, функции сложных липидов: фосфолипидов, гликолипидов, липопротеинов.

 

Функции липидов. Классификация липидов по строению.

 

Липиды(от греч.Lipos – жир)- органические соединения, входящие в состав всех тканей организма, не растворяемые в воде, но хорошо растворяемы в органических растворителях.

Липиды составляют 10-20 % от массы тела.Распределяются липиды следующим образом:

1. Резервный жир (около 80% всех липидов организма)–жир, который откладывается про запас и постоянно обновляется.

2. Протоплазматический жир или Структурные липиды (около 20% всех липидов) – он входит в состав мембран клеток, его количество постоянно, практически не изменяется при голодании или ожирении.Наиболее богата структурными липидами нервная ткань (до 25%).

Суточная потребность в жирах составляет 80 – 100 г., из них 25-30% растительные жиры. Потребность в липидах, зависит от возраста, пола, рода трудовой занятости, н/р, в пожилом возрасте, а так же при малой физической нагрузке потребность в жирах снижается, в условиях холодного климата и при тяжелой физической работе – увеличивается.


Биологические функции липидов.

1. Энергетическая. При окислении 1 г липидов образуется 9,3 ккал энергии,

что обеспечивает до 30% энергозатрат организма.

2. Структурная. Липиды (фосфолипиды, холестерин, гликолипиды) являются основными структурными компонентами клеточных мембран, обеспечивая их полупроницаемость.

3. Транспортная. Липопротеины осуществляют транспорт липидов, жирорастворимых витаминов в крови к органам и тканям, через липидный слой мембран (фосфолипиды) транспортируются стероидные гормоны, жирорастворимые витамины и др. жирорастворимые вещества.

4. Терморегуляторная. Липиды подкожно-жировой клетчатки, обладая низкой теплопроводностью, способствуют поддержанию постоянной температуры тела. Например, подкожно-жировой слой арктических животных намного превосходит таковой у животных неарктической зоны.

5. Защитная. Липиды соединительной ткани, окружающей внутренние органы (например, сальник), подкожно-жировой клетчатки, предохраняют органы от механических воздействий. Входя в состав секрета сальных желез, липиды защищают кожные покровы от воздействия окружающей среды.

6. Эмульгирующая. Желчные кислоты (производные холестерина) в кишечнике эмульгируют жиры (дробят жировые капли на более мелкие, что значительно увеличивает общую площадь поверхности жировых капель и облегчает тем самым переваривание под действием ферментов – липаз).

7. Регуляторная. Стероидные гормоны (половые, коры надпочечников), простагландины – по химической природе липиды.

8. Витаминная. Жирорастворимые витамины: А, Д, Е, К - по химической природе - липиды, поступают в организм вместе с пищевыми липидами. С растительными маслами поступают полиненасыщенные высшие жирные кислоты (линолевая, линоленовая, арахидоновая), которые не синтезируются в организме человека (т.е. являются незаменимыми факторами питания). Их объединяют под названием «витамин F».

9. Источник эндогенной воды. При окислении 100 г жира образуется 107 г

10. Рецепторная–ганглиозиды являются компонентами специфических рецепторных участков и тем самым участвуют в передаче нервных импульсов.

11. Липиды играют роль смазочного материала для кожи, предохраняя кожу от воздействия окружающей среды.

Классификация.По строению липиды делятся на:

I. Простые:

Нейтральные жиры (ТАГ, ДАГ,МАГ)

Воска

Стерины, стериды.

II. Сложные:

Фосфолипиды

Гликолипиды

Липопротеины

Основным структурным компонентом всех липидов (за небольшим исключением) являются жирные кислоты.

Жирные кислоты.

ВЖК-это монокарбоновые (имеющие одну карбоксильную группу -СООН) кислоты с неразветвленной углеродной цепью, имеющей вид гармошки, с четным числом атомов углерода (от 12 до 24). Длинная неполярная углеводородная цепочка гидрофобна. Поэтому липиды нерастворимы в воде. ВЖК могут быть насыщенные, т.е. содержать только одинарные связи, или ненасыщенные, т. е. содержат одну или несколько двойных связей.

Жирные кислоты,наиболее часто встречающиеся.

Насыщенные:

Пальмитиновая С15 Н31 СООН

Стеариновая С17 Н35 СООН

Ненасыщенные:

Олеиновая С17 Н33 СООН (1- двойная связь)

Линолевая С17 Н31 СООН (2-двойные св.)

Линоленовая С17 Н31 СООН (3-двойные св.)

Арахидоновая С19 Н31 СООН (4-двойные св.)

Линолевая, линоленовая и арахидоновая кислоты – полиненасыщенные ВЖК (имеют несколько двойных связей) не синтезируются в организме человеканезаменимые факторы и, поэтому, должны поступать с пищей – растительными маслами (около 5 г в день). Они способствуют снижению содержания в крови холестерина.

Свойства ВЖК.

1. Насыщенные жирные кислоты являются твердыми воскоподобными веществами, а ненасыщенные ВЖК - жидкости.

2. ВЖК нерастворимы в воде, но в разбавленных растворах NаOH и KOH они образуют соли жирных кислот - мыла. Мыла- амфипатические (амфифильные) соединения, т.е. обладают двойной растворимостью: ионизированная карбоксильная группа – гидрофильна, т.е. растворяется в воде и др. полярных растворителях, а неполярный углеводородныйрадикал –гидрофобный, т.е. растворяется в липидах и др. органических растворителях.

Мыла способны эмульгировать нерастворимые в воде жиры. Углеводородные радикалы при этом встраиваются в капли жира, а полярныегруппы взаимодействуют с водой, образуя из мельчайших капель жира стойкую эмульсию. В жесткой воде мыла образует хлопья, т.к. жесткая вода сод. Са2+ и, Мg2+, а их соли нерастворимы в воде.

Структура, свойства, функции простых липидов: нейтральных жиров, стеринов и стеридов, восков.

Простые липиды.

1. Нейтральные жиры: Трицилглицерины (ТАГ), диацилглицерины (ДАГ), моноацилглицерины (МАГ) –это сложные эфиры высших жирных кислот и трехатомного спирта глицерина.

ТАГ – это неполярные гидрофобные вещества.

Функции ТАГ: энергетическая; терморегуляторная; защитная,резервная.

Различают – простые ТАГ – содержат остатки одинаковыхВЖК.

Смешанные ТАГ – содержат 2 или 3 разных остатка ВЖК.

Свойства ТАГопределяют жирные кислоты, входящие в их состав.

1. ТАГ, содержащие только насыщенные ВЖК, при комнатной t0 твердые вещества, н/р, животные жиры (говяжье сало, основной компонент которого явл. тристеарин). ТАГ, содержащие 3 ненасыщенные ЖК, при комнатной t0- жидкие вещества, н/р, растительные масла.(триолеин - основной компонент оливкового масла).

Сливочное масло имеет мягкую консистенцию, т.к. представляет смесь ТАГ имеющих в составе и насыщенные и ненасыщенные ЖК.

2. ТАГ нерастворимы в воде, но хорошо растворяются в неполярных растворителях (бензол, эфир, хлороформ).

3. По удельному весу легче воды (во всех подливках масло плавает сверху).

4. Подвергаются щелочному гидролизу (омылению) под действием КОН и NaOH с образованием мыл (солей ВЖК) и глицерина.

5. ТАГ, имеющие в своем составе ненасыщенные ВЖК, подвергаются каталитическому гидрированию, в результате двойные связи восстанавливаются до одинарных. Это свойство используется при переработке жидких растительных масел в твердые пищевые жиры- маргарины.

6. На воздухе ТАГ, содержащие ненасыщенные ВЖК, подвергаются самоокислению2 взаимодействует с ЖК по месту двойных связей), в результате образуется токсичные соединения с неприятным прогорелым запахом. Какой жир быстрее прогорает свиной или подсолнечное масло? Почему?

В клетках самоокисление (ПОЛ) ненасыщенных жиров полностью заторможено благодаря наличию вит. Е, С, различным ферментам. При ряде заболеваний самоокисления возможно, вызывая образования аномальных липидных включений.

2. Воски- это сложные эфиры высших одно-, двухатомных спиртов (олеиновый спирт) и ВЖК. В нашем организме, н/р, кожными железами вырабатывается воск ланолин. Воски выполняют функцию защитного покрытия, смазывающего и смягчающего кожу и предохраняюего ее от воды и др. воздействий внешней среды.

У водопроводящих птиц копчиковой железой вырабатывается воска придающие перьевому покрову водоотталкивающие свойства. Блеск листьев многих тропических растений обусловлен покрывающим их воскам которых отражает световые лучи и предохраняет испарения влаги. Шампунь « Санара» с фруктовым воском. Крема для рак ланолином.

Стерины, стериды.

Стерины–это высокомолекулярные циклические спирты,н/р,холестерин - циклический, непредельный одноатомный спирт. Это свободный холестерин (25 % от общего холестерина).

Стериды- это сложны эфиры стеринов и ВЖК., н/р, Холестериды-эстерифицированный (эфиросвязанный) холестерин (75% - от общего).

Функции (биорль) холестерина:

1. Структурная - является компонентом мембран клеток. Содержание его в наружной мембране определяет ее прочность, эластичность и проницательность для различных веществ. Холестерин является регулятором активности встроенных в мембрану белков – ферментов,которые определяют направленность и интенсивность обменных процессов в клетках.

2. Является предшественником стероидных гормонов (половых, минералокортикоидов, глюкокортикоидов и др.)

3. В печени из холестерина образуются желчные кислоты, необходимые для эмульгирования, переваривания и всасывания липидов.

4. Является предшественником витамина Д,который образуется под действием УФО из ХС. Вит Д способствует нормальному формированию костей.

5.Холестерин повышает устойчивость эритроцитов к гемолизу.

6.Определенные количества холестерина стимулирует клеточное деление.

7.Холестерин служит изолятором для нервных волокон, обеспечивая проведение нервных импульсов.

 


megapredmet.ru

Липиды это что такое, классификация и функции липидов в организме человека

Липиды – это важнейший источник энергетического запаса организма. Они объединяют группу органических элементов, которая включает жиры, жироподобные элементы (липоиды). Стоит помнить, что жиры имеются во всех живых клеточных структурах, они выполняют функцию естественного барьера, ограничивают свойство проницаемости клеток, входят в состав гормонов. Но все же стоит подробнее рассмотреть особенности данных веществ и узнать их важность для организма человека.

Содержание статьи

Особенности

Липиды являются важными веществами, которые требуются для выполнения многих жизненно важных функций. Они почти не растворяются в воде, а именно являются гидрофобными соединениями. Однако вместе с  Н2О они позволяют получить эмульсию. Липиды могут распадаться в органических растворителях – в бензоле, ацетоне, спиртах и др. Жиры не имеют цвета и запаха. Также стоит обратить внимание на химический состав данных элементов.

Молекулы простых липидов имеют в основе жирные кислоты и спирт, а сложных – спирт, высокомолекулярные жирные кислоты и другие вещества. Поэтому несложно сказать, на какие вещества распадаются липиды – на спирты и жирные кислоты. Они имеются в составе всех живых клеток. Жиры входят в биологические мембраны, они оказывают воздействие на свойства проницаемости клеточных структур и активность многих ферментов. Липиды принимают участие в различных процессах человеческого организма: в передаче нервного импульса, сокращении мышц, создании межклеточных контактов, иммунохимических процессах.

Видео

Характеристика строения

Биологическое строение липидов – соединение жирных кислот и спиртов. При присоединении дополнительных групп (фосфора, серы, азота) образуются сложные эфиры. В составе жировой молекулы обязательно присутствуют атомы углерода, водорода и кислорода. Жирные кислоты – это алифатические, не содержащие циклических углеродных связей, карбоновые  (группа -СООН) кислоты. Они отличаются числом группы -СН2-.

Существует две разновидности жирных кислот:

  • Ненасыщенные. Они включают одну или несколько двойных связей (-СН=СН-).
  • Насыщенные. Они не содержат двойных связей между атомами углерода.

Стоит отметить! Жирные кислоты запасаются в клетках в виде капель, гранул. В многоклеточном организме – в виде жировой ткани, которая состоит из адипоцитов – клеток, способных накапливать жиры.

Классификация

Жиры являются сложными соединениями, которые могут встречаться в разных модификациях, они выполняют разные функции. Они представляют особую важность для клеток, принимают участие в многочисленных процессах человеческого организма. По этой причине классификация липидов достаточно обширная, она включает множество видов жиров, их основные признаки.

Ниже в таблице имеется полная классификация жиров в зависимости от строения.

Типы Виды Характеристика
Простые Глицериды Это нейтральные жиры. Они относятся к сложным эфирам, которые состоят из глицерина и жирных кислот. Выделяют моно-, ди- и триглицериды
Воски Сложные эфиры жирных кислот и спиртов (одноатомных или двухатомных)
Сложные Фосфолипиды Они образуются в результате присоединения к жирам остатков фосфорной кислоты. Это обширная группа, которая включает две подгруппы:
·         глицерофосфолипиды;
·         сфинголипиды
Гликолипиды Состоят из углеводов и липидов, которые образуют гидрофильно-гидрофобные комплексы

Описанные жиры относятся к омыляемым, во время их гидролиза получается мыло. Отдельно в группу неомыляемых жиров, а именно не вступающих в реакцию с водой, включают стероиды.

В зависимости от строения стероиды подразделяют на подгруппы:

  • Стерины. Это стероидные спирты. Они содержатся в составе животных и растительных тканей (холестерин, эргостерин).
  • Желчные кислоты. Производные холевой кислоты. Они содержат одну группу –СООН. Обеспечивают полноценное растворение холестерина и переваривание липидов. К этой группе можно отнести такие виды жирных кислот, как холевая, дезоксихолевая, литохолевая.
  • Стероидные гормоны. Обеспечивают усиленный рост и развитие организма. К этой группе относятся гормоны – кортизол, тестостерон, кальцитриол.

Существует большая группа – липопротеины. Это сложные соединения жиров и белков (аполипопротеинов). Липопротеины относятся к сложным белкам, но не к жирам.

В их составе имеются разнообразные сложные эфиры:

  • холестерины;
  • фосфолипиды;
  • нейтральные жиры;
  • жирные кислоты.

 

Выделяют две группы липопротеинов:

  • Растворимые. Содержатся в плазме крови, молоке, желтке.
  • Нерастворимые. Имеются в составе плазмалеммы, оболочки нервных волокон, хлоропластов.

Жиры в зависимости от физической структуры разделяют на твердые, жиры, масла. По нахождению в организме выделяют резервные (непостоянные, зависят от питания) и структурные (генетические обусловленные) жиры. В соответствии с происхождением бывают животными и растительными.

Функции липидов

Жиры являются важными элементами, которые могут поступать в организм вместе с пищей. Они принимают участие в метаболизме. Вещества представляют огромную важность для клеток и других структур.

Выделяют следующие функции липидов в организме человека:

  • Благодаря триглицеридам сохраняется тепло организма.
  • Подкожный жир является отличной защитой внутренних органов от различных негативных факторов.
  • Жиры выполняют структурные функции. Они заключаются в том, что липиды принимают участие в построении мембран клеток всех внутренних органов, тканей.
  • Энергетическая функция. Жиры предоставляют 25-30% всей энергии, которая требуется для организма.
  • Функция запасания питательных элементов. Запасы жира в организме являются его «энергетическим депо». Это могут быть капли внутри клеточных структур, «жировое тело» у насекомых, подкожная клетчатка, в которой имеется основное скопление жировых клеток.
  • Гликолипиды и ряд других жиров выполняют рецепторную функцию. Они связывают клетки, проводят сигналы, которые получают из внешней среды.
  • Воски создают на поверхности листьев растений защитный слой. Он предохраняет их от высыхания и промокания.

Это основные пути использования липидов в организме. Главное назначение жиров для человеческого организма состоит в создании требуемой энергии и запаса питательных веществ.

Видео

Это важные вещества, которые требуются для поддержания полноценной жизнедеятельности клеток, тканей, внутренних органов.

Липиды в составе диеты человека

Среди липидов в диетическом питании человека обычно используются триглицериды – нейтральные жиры. Они являются богатым источником энергии, а также они требуются для всасывания витаминов с жирорастворимой структурой.

Насыщенные кислоты имеются в составе следующей пищи:

  • различных видов мяса – говядины, свинины, баранины, птицы;
  • молочных продуктов;
  • некоторых тропических фруктов, а именно кокосов.

Ненасыщенные виды кислот могут попадать в организм человека при употреблении следующих видов продуктов:

  • орехов;
  • семечек подсолнечника;
  • оливкового и других растительных масел.

Главными источниками холестерола в рационе является мясо, внутренние органы животных, яичные желтки, молочные продукты, рыба.

Для справки! Организация American Heart Association советует потреблять липиды в количестве не больше 30% от общего рациона. При диете стоит уменьшить содержание насыщенных кислот до 10% от всех жиров. Не нужно принимать больше 300 мг холестерола в сутки (этот объем входит в состав одного яичного желтка).

Липиды – важные элементы, которые имеют огромное значение для природы и человека. Данные вещества обладают сложным составом, а их классификация объединяет множество групп и подгрупп, которые обладают разными свойствами и отличительными функциями.

pohudet.guru

Липиды. Классификация липидов и их функции

Липиды – органические вещества, которые: 1) плохо растворимы или нерастворимы в воде, но растворяются в органических растворителях;2) являются настоящими или потенциальными эфирами жирных кислот; 3)усваиваются и используются живыми организмами.

В зависимости от функций в организме различают две группы липидов:

1. Резервные липиды (жиры жировых депо) – кол-во и состав непостоянны, зависят от режима питания и физического состояния организма.

2. Структурные липиды — их кол-во и состав в организме строго постоянны, генетически обусловлены и в норме не зависят от режима питания, функционального состояния организма.

Классификация липидов по химическому строению:

Омыляемые

Неомыляемые

Простые

Сложные

Высшие жирные кислоты

Высшие спирты

Стероиды

Полиизопреноид­ные соединения (терпеноиды,

Каротиноиды)

Воска

Нейтральные жиры (МАГ, ДАГ, ТАГ, диольные липиды)

Фосфолипиды

Гликолипиды

Cульфолипиды

Стеролы (холестерол)

Стероидные гормоны

Глицерофосфолипиды (фосфоацилглицеролы)

Сфингофоcфатиды

Фосфатидилэтаноламины

Фосфатидилхолины

Фосфатидилсери-ны

Фосфатидилинозитол

Фосфатидилглицеролы

Дифосфатидилглицеролы (кардиолипины)

Плазмалогены

Цереброзиды

Ганглиозиды

Функции простых липидов:

1. Энергетическая функции (основное Энергетическое топливо клетки). Преимущества жиров в качестве источников энергии перед углеводами: 1) большая теплотворная способность (1 г ТАГ – 9,3 ккал, а 1г углеводов – 4 ккал). 2) из-за гидрофобности жир откладывается про запас в безводной среде, а значит, он занимает меньший объем. В результате запасов липидов хватает на месяц жизни без пищи, а углеводов – только на сутки.

2. Терморегуляторная функция благодаря: а) жир плохо проводит тепло, поэтому жировая клетчатка хороший теплоизолятор; б) при охлаждении организма на генерирование тепла за счет выделения энергии расходуются все те же ацилглицеролы.

3. Защитная функция (Механическая защита подкожной жировой клетчатки).

4. Источники эндогенной воды в организме. При окислении 100 г ацилглицеролов образуется 107 г воды.

5. Функция естественных растворителей. Ацилглицеролы обеспечивают всасывание в кишечнике незаменимых ЖК и жирорастворимых витаминов.

6. Предшественники эйкозаноидов.

7. Воска выполняют защитные функции

Функции фосфолипидов:

1) главные компоненты биомембран (особенно лецитин, кефалин)

2) фосфатидилинозит-4,5-бисфосфат (производное фосфотидилинозита) – предшественник важных вторичных посредников – ДАГ и ИФ3

3) регуляторы активности ферментов (фосфатидилхолин, фосфатидилсерин, сфингомиелин активируют или ингибируют активность ферментов, катализирующих процессы свертывания крови).

4) ряд гормонов (половые, гормоны коры надпочечников) являются производными липидов

5) детергенты кишечника и желчного пузыря (важным компонентом желчи и мицелл, образуемых в ходе переваривания пищи).

6) источник арахидоновой кислоты — предшественника эйкозаноидов

7) обеспечивают прикрепление белков к мембране (некоторые внеклеточные белки прикрепляются к внешней стороне плазматической мембраны за счет образования ковалентных связей с фосфатидилинозитолом: щелочная фосфатаза, липопротеин липаза, холинэстераза).

8) принимают участие в формировании транспортных форм других липидов;

9) могут выполнять энергетическую функцию

10) являются компонентом сурфактанта легких

Функции гликолипидов в организме:

Опосредуют

Межклеточное взаимодействие

Взаимодействие клеток с межклеточным матриксом

Взаимодействие клеток с микроорганизмами

Модулируют

Пролиферацию клеток, угнетая ее (апоптоз, нарушение клеточного цикла)

Активность протеинкиназы

Активность рецептора к фактору роста

Поддерживают

Структурную прочность мембран

Конформацию мембранных белков

Функции неомыляемых липидов:

1) холестерол – один из основных компонентов биомембран и ЛП, исходное соединение для синтеза ряда стероидных гормонов.

2) к неомыляемым липидам относятся жирорастворимые витамины (А, Д, Е, К)

uchenie.net

1 Биологические функции липидов

19

ЛИПИДЫ

ЛИПИДЫ - это разнородная группа природных соединений, полностью или почти полностью нерастворимых в воде, но растворимых в органических растворителях и друг в друге, дающих при гидролизе высокомолекулярные жирные кислоты.

В живом организме липиды выполняют разнообразные функции.

Биологические функции липидов:

1) Структурная

Структурные липиды образуют сложные комплексы с белками и углеводами, из которых построены мембраны клетки и кле­точных структур, участвуют в разнообразных процессах, протекаю­щих в клетке.

2) Запасная (энергетическая)

Запасные липиды (в основном жиры) являются энергетическим резервом организма и участвуют в обменных процессах. В растениях они накапливаются главным образом в плодах и семенах, у животных и рыб — в подкожных жировых тканях и тканях, окру­жающих внутренние органы, а также печени, мозговой и нервной тка­нях. Содержание их зависит от многих факторов (вида, возраста, питания и т. д.) и в отдельных случаях составляет 95—97% всех вы­деляемых липидов.

Калорийность углеводов и белков: ~ 4 ккал/грамм.

Калорийность жира: ~ 9 ккал/грамм.

Преимуществом жира как энергетического резерва, в отличие от углеводов, является гидрофобность – он не связан с водой. Это обеспечивает компактность жировых запасов - они хранятся в безводной форме, занимая малый объем. В среднем, у человека запас чистых триацилглицеринов составляет примерно 13 кг. Этих запасов могло бы хватить на 40 дней голодания в условиях умеренной физической нагрузки. Для сравнения: общие запасы гликогена в организме – примерно 400 гр.; при голодании этого количества не хватает даже на одни сутки.

3) Защитная

Подкожные жировые ткани предо­храняют животных от охлаждения, а внутренние органы — от меха­нических повреждений.

Образование запасов жира в организме человека и некоторых животных рассматривается как приспособление к нерегулярному питанию и к обитанию в холодной среде. Особенно большой запас жира у животных, впадающих в длительную спячку (медведи, сурки) и приспособленных к обитанию в условиях холода (моржи, тюлени). У плода жир практически отсутствует, и появляется только перед рождением.

Особую группу по своим функциям в живом организме составляют защитные липиды растений — воски и их производные, покрывающие поверхность листьев, семян и плодов.

4) Важный компонент пищевого сырья

Липиды являются важным компонентом пищи, во многом опреде­ляя ее пищевую ценность и вкусовое достоинство. Исключительно велика роль липидов в разнообразных процессах пищевой техноло­гии. Порча зерна и продуктов его переработки при хранении (прогоркание) в первую очередь связана с изменением его липидного комп­лекса. Липиды, выделенные из ряда растений и животных, — основное сырье для получения важнейших пищевых и технических про­дуктов (растительного масла, животных жиров, в том числе сливоч­ного масла, маргарина, глицерина, жирных кислот и др.).

2 Классификация липидов

Общепринятой классификации липидов не существует.

Наибо­лее целесообразно классифицировать липиды в зависимости от их хи­мической природы, биологических функций, а также по отношению к некоторым реагентам, например, к щелочам.

По химическому составу липиды обычно делят на две группы: простые и сложные.

Простые липиды – сложные эфиры жирных кислот и спиртов. К ним относятся жиры, воски и стероиды.

Жиры – эфиры глицерина и высших жирных кислот.

Воски – эфиры высших спиртов алифатического ряда (с длинной углеводной цепью 16-30 атомов С) и высших жирных кислот.

Стероиды – эфиры полициклических спиртов и высших жирных кислот.

Сложные липиды – помимо жирных кислот и спиртов содержат другие компоненты различной химической природы. К ним относятся фосфолипиды и гликолипиды.

Фосфолипиды – это сложные липиды, в которых одна из спиртовых групп связана не с ЖК, а с фосфорной кислотой (фосфорная кислота может быть соединена с дополнительным соединением). В зависимости от того, какой спирт входит в состав фосфолипидов, они подразделяются на глицерофосфолипиды (содержат спирт глицерин) и сфингофосфолипиды (содержат спирт сфингозин).

Гликолипиды – это сложные липиды, в которых одна из спиртовых групп связана не с ЖК, а с углеводным компонентом. В зависимости от того, какой углеводный компонент входит в состав гликолипидов, они подразделяются на цереброзиды (в качестве углеводного компонента содержат какой-либо моносахарид, дисахарид или небольшой нейтральный гомоолигосахарид) и ганглиозиды (в качестве углеводного компонента содержат кислый гетероолигосахарид).

Иногда в самостоятельную группу липидов (минорные липиды) выделяют жирораство­римые пигменты, стерины, жирорастворимые витамины. Некоторые из этих соединений могут быть отнесены к группе простых (нейтраль­ных) липидов, другие — сложных.

По другой классификации липиды в зависимости от их отношения к щелочам делят на две большие группы: омыляемые и неомыляемые. К группе омыляемых липидов относятся простые и сложные липиды, которые при взаимодействии со щелочами гидролизуются с образова­нием солей высокомолекулярных кислот, получивших название «мы­ла». К группе неомыляемых липидов относятся соединения, не подвергающиеся щелочному гидролизу (стерины, жирорастворимые витамины, простые эфиры и т. д.).

По своим функциям в живом организме липиды делятся на струк­турные, запасные и защитные.

Структурные липиды - главным образом фосфоли­пиды.

Запасные липиды - в основном жиры.

Защитные липиды растений — воски и их производные, покрывающие поверхность листьев, семян и плодов, животных – жиры.

ЖИРЫ

Химическое название жиров - ацилглицерины. Это сложные эфиры глицерина и высших жирных кислот. "Ацил-" - это означает "остаток жирных кислот".

В зависимости от количества ацильных радикалов жиры разделяются на моно-, ди- и триглицериды. Если в составе молекулы 1 радикал жирных кислот, то жир называется МОНОАЦИЛГЛИЦЕРИНОМ. Если в составе молекулы 2 радикала жирных кислот, то жир называется ДИАЦИЛГЛИЦЕРИНОМ. В организме человека и животных преобладают ТРИАЦИЛГЛИЦЕРИНЫ (содержат три радикала жирных кислот).

Три гидроксила глицерина могут быть этерифицированы либо только одной кислотой, например пальмитиновой или олеиновой, либо двумя или тремя различными кислотами:

Природные жиры содержат главным образом смешанные триглице-риды, включающие остатки различных кислот.

Так как спирт во всех природных жирах один и тот же — глицерин, наблюдаемые между жирами раз­личия обусловлены исключительно составом жирных кислот.

В жирах обнаружено свыше четырехсот карбоновых кислот раз­личного строения. Однако большинство из них присутствует лишь в незначительном количестве.

Кислоты, содержащиеся в природных жирах, являются монокарбоновыми, постро­ены из неразветвленных углеродных цепей, содержащих чет­ное число углеродных атомов. Кислоты, содержащие нечетное число атомов углерода, имеющие разветвленную углеродную цепочку или содержащие циклические фрагменты, присутствуют в незначительных количествах. Исключение составляют изовалериановая кислота и ряд циклических кислот, содержащихся в не­которых весьма редко встречающихся жирах.

Наиболее распространенные в жирах кислоты содержат от 12 до 18 атомов угле­рода, они часто называются жирными кислотами. В состав многих жиров входят в небольшом количестве низкомолекулярные кислоты (С2—С10). Кислоты с числом атомов углерода выше 24 присут­ствуют в восках.

В состав глицеридов наиболее распространенных жиров в значительном количестве входят ненасыщенные кислоты, содержащие 1—3 двойные связи: олеиновая, линолевая и линоленовая. В жирах животных присутствует арахидоновая кислота, содержащая четыре двойные связи, в жирах рыб и морских животных обнаружены кислоты с пятью, шестью и более двойными связями. Большинство ненасыщенных кислот липидов имеет цис-конфигурацию, двойные связи у них изолированы или разделены метиленовой (—СН2—) груп­пой.

Из всех непредельных кислот, содержащихся в природных жирах, наиболее распространена олеиновая кислота. В очень многих жирах олеиновая кислота составляет больше полови­ны от общей массы кислот, и лишь в немногих жирах ее содер­жится меньше 10%. Две другие непредельные кислоты — линолевая и линоленовая — также очень широко распростра­нены, хотя они присутствуют в значительно меньшем количестве, чем олеиновая кислота. В заметных количествах линолевая и линоленовая кислоты содержатся в растительных мас­лах; для животных организмов они являются незаменимыми кислотами.

Из предельных кислот пальмитиновая кислота почти так же широко распространена, как и олеиновая. Она присутству­ет во всех жирах, причем некоторые содержат ее 15—50% от общего содержания кислот. Широко распространены стеари­новая и миристиновая кислоты. Стеариновая кислота содер­жится в большом количестве (25% и более) только в запасных жирах некоторых млекопитающих (например, в овечьем жи­ре) и в жирах некоторых тропических растений, например в масле какао.

Целесообразно разделять кислоты, содержащиеся в жи­рах, на две категории: главные и второстепенные кислоты. Главными кислотами жира считаются кислоты, содержание которых в жире превышает 10%.

Физические свойства жиров

Как правило, жиры не выдерживают перегонки и разлага­ются, даже если их перегоняют при пониженном давлении.

Температура плавления, а соответственно и консистенция жиров зависят от строения кислот, входящих в их состав. Твердые жиры, т. е. жиры, плавящиеся при сравнительно вы­сокой температуре, состоят преимущественно из глицеридов предельных кислот (стеариновая, пальмитиновая), а в маслах, плавящихся при более низкой температуре и представляющих собой густые жидкости, содержатся значительные количества глицеридов непредельных кислот (олеиновая, линолевая, ли-ноленовая).

Так как природные жиры представляют собой сложные смеси смешанных глицеридов, они плавятся не при определен­ной температуре, а в определенном температурном интервале, причем предварительно они размягчаются. Для характеристи­ки жиров применяется, как правило, температура затверде­вания, которая не совпадает с температурой плавления — она несколько ниже. Некоторые природные жиры — твердые ве­щества; другие же — жидкости (масла). Температура затверде­вания изменяется в широких пределах: -27 °С у льняного мас­ла, -18 °С у подсолнечного, 19—24 °С у коровьего и 30—38 °С у говяжьего сала.

Температура затвердевания жира обусловлена характером составляющих его кислот: она тем выше, чем больше содержа­ние предельных кислот.

Жиры растворяются в эфире, полигалогенопроизводных, в сероуглероде, в ароматических углеводородах (бензоле, толу­оле) и в бензине. Твердые жиры трудно растворимы в петролейном эфире; нерастворимы в холодном спирте. Жиры нера­створимы в воде, однако они могут образовывать эмульсии, ко­торые стабилизируются в присутствии таких поверхностно-ак­тивных веществ (эмульгаторов), как белки, мыла и некоторые сульфокислоты, главным образом в слабощелочной среде. При­родной эмульсией жира, стабилизированной белками, являет­ся молоко.

Химические свойства жиров

Жиры вступают во все химические реакции, характерные для сложных эфиров, однако в их химиче­ском поведении имеется ряд особенностей, связанных со строением жирных кислот и глицерина.

Среди химических реакций с участием жиров выделяют несколько типов превращений.

studfile.net

Липиды: функции

Липиды: функции

Структурная функция. Липиды принимают участие в построении мембран клеток всех органов и тканей. Они участвуют в образовании многих биологически важных соединений.

Энергетическая функция. Липиды обеспечивают 25-30% всей энергии, необходимой организму . При полном распаде 1 г жира выделяется 38,9 кДж энергии, что примерно в 2 раза больше по сравнению с углеводами и белками.

Функция запасания питательных веществ. Жиры являются своего рода "энергетическими консервами". Жировыми депо могут быть и капля жира внутри клетки, и "жировое тело" у насекомых, и подкожная клетчатка, в которой накапливается жир у человека.

Функция терморегуляции. Жиры плохо проводят тепло. Они откладываются под кожей, образуя у некоторых животных огромные скопления. Например, у кита слой подкожного жира достигает 1 м. Это позволяет теплокровному животному жить в холодной воде полярного океана. У многих млекопитающих существует специальная жировая ткань, играющая в основном роль терморегулятора, своеобразного биологического "обогревателя". Эту ткань называют бурым жиром . Она имеет бурый цвет из-за того, что очень богата митохондриями красно-бурой окраски из-за находящихся в них железосодержащих белков. В этой ткани производится тепловая энергия, имеющая для млекопитающих важное значение в условиях жизни при низких температурах. Жиры выполняют еще множество различных функций в клетке и организме. Можно напомнить, что жир - поставщик так называемой эндогенной воды : при окислении 100 г жира выделяются 107 мл воды. Благодаря такой воде существуют многие пустынные животные, например песчанки, тушканчики, с этим связано и накопление жира в горбах у верблюда. Слой жира защищает нежные органы от ударов и сотрясений (например, околопочечная капсула, жировая подушка около глаза). Жироподобные соединения покрывают тонким слоем листья растений, не давая им намокать во время обильных дождей. Многие липиды являются предшественниками в биосинтезе гормонов. Например, к липидам относятся половые гормоны человека и животных: эстрадиол (женский) и тестостерон (мужской). Из ненасыщенных жирных кислот в клетках человека и животных синтезируются такие регуляторные вещества, как простагландины . Они обладают широким спектром биологической активности: регулируют сокращение мускулатуры внутренних органов; поддерживают тонус сосудов; регулируют функции различных отделов мозга, например центры теплорегуляции. Повышение температуры при ряде заболеваний связано с усилением синтеза простагландинов и возбуждением центра терморегуляции. Аспирин тормозит синтез простагландинов и таким образом понижает температуру тела.

См. подробнее: ЛИПИДЫ: ФУНКЦИИ, МЕТАБОЛИЗМ, ТРАНСПОРТ И ЗАБОЛЕВАНИЯ

Ссылки:

medbiol.ru

Классификация липидов:

  1. Простые липиды представляют собой спиртовые эфиры жирных кислот. К ним относятся природные жиры и воски. Жиры входят в состав организма человека, животных, растений, микробов, некоторых вирусов. Содержание жиров в биологических объектах, тканях и органах может достигать 90%. Воски выполняют преимущественно защитные функции. У растений они покрывают тонким слоем листья, стебли и плоды, предохраняя от смачивания водой и проникновения микроорганизмов. Под покровом пчелиного воска хранится мед, и развиваются личинки. Животный воск – ланолин – предохраняет волосы и кожу от действия воды.

  2. Сложные липиды. При гидролизе этих липидов образуются помимо спирта и кислот также и другие соединения. К ним относятся фосфолипиды (лецитины, кефалины и др.), гликолипиды и сфинголипиды (обнаруживаются в миелиновых оболочках нервов и выполняют рецепторную функцию в клеточных мембранах).

  3. жироподобные вещества Стероиды характеризуются наличием циклопентанпергидрофенантренового ядра. К стероидам принадлежат: гормоны коры надпочечников и половых желез (эстрадиол - женский и тестостерон - мужской половой гормон), витамин D, желчные кислоты, холестерин, терпены (эфирные масла, от которых зависит запах растений), гиббереллины (ростовые вещества растений).

  4. Пигменты. Каротиноиды (животные и растительные пигменты). Порфирины, к которым относятся биологически важные пигменты гемоглобин, хлорофилл, билирубин; флавины (важнейшие вещества – лактофлавин молока и рибофлавин = витамин В2.).

Функции липидов.

  1. Энергетическая функция – основная функция липидов. 1 грамм жиров дает 38,9 кДж. Единственной пищей новорожденных млекопитающих является молоко, энергоемкость которого определяется содержанием в нем жира.

  2. Строительная функция. Жиры принимают участие в образовании клеточных мембран. В составе мембран находятся в виде фосфолипидов, гликолипидов, липопротеидов.

  3. Запасающая функция. Жиры являются запасным веществом животных и растений. Особенно важно для пойкилотермных животных, или обитающих в аридных зонах. Семена многих растений содержат жир, как источник энергии развивающегося растения.

  4. Терморегуляторная функция. Жиры являются хорошими термоизоляторами, откладываются под кожей, образуя жировые прослойки.

  5. Защитно-механическая функция. Слои подкожной жировой клетчатки не только предотвращают потери тепла, но и защищают организм от механических воздействий. Жировые капсулы внутренних органов обеспечивают фиксацию анатомического положения внутренних органов, защищают их от сотрясения, травмирования при внешних воздействиях.

  6. Каталитическая функция связана с жирорастворимыми витаминами (A, D, E, K) которые также относят к липидам и являющихся кофакторами ферментов.

  7. Источник метаболической воды. Вода – один из продуктов окисления жиров. Жир, составляющий горб верблюда, является источником воды. Окисление 1 кг жира выделяется 1,1 кг воды.

  8. Повышение плавучести у водных животных.

  9. Регуляторная – стероидные гормоны регулируют некоторые процессы обмена веществ и размножения.

Углеводы, или сахариды.

Органические вещества, в состав которых входит углерод, кислород и водород. В животных клетках углеводы составляют от 1% до 5%, в растительных – до 90% сухой массы.

studfile.net

19. Липиды

Липиды – это входящие в состав живых организмов жироподобные вещества, плохо растворимые в воде и хорошо растворимые в неполярных органических растворителях. Под этим названием объединяют разные по химическому строению и биологическим функциям вещества, которые извлекают из растительных и животных тканей путем экстракции неполярными органическими растворителями.

В зависимости от способности к гидролизу с образованием солей высших жирных кислот (мыл) липиды делят на омыляемые и неомыляемые.

19.1. Омыляемые липиды

Омыляемые липиды состоят из двух или более структурных компонентов, на которые они расщепляются при гидролизе под действием кислот, щелочей или ферментов липаз.

Основными структурными компонентами омыляемых липидов являются спирты и высшие жирные кислоты. Омыляемые липиды более сложного строения могут содержать остатки фосфорной кислоты, аминоспиртов, а также остатки моно- и олигосахаридов.

Высшие жирные кислоты – это карбоновые кислоты, насыщенные или ненасыщенные, выделенные из жиров путем гидролиза. Для их строения характерны следующие основные особенности: имеют неразветвленную структуру с четным числом атомов углерода от С2 до С80, но чаще всего встречаются кислоты состава С16, С18 и С20; ненасыщенные кислоты, как правило, содержат двойную связь в положении 9; если двойных связей несколько, то они разделены группой СН2; двойные связи в ненасыщенных кислотах имеют цис-конфигурацию.

Основные жирные кислоты в составе липидов:

насыщенные

Масляная C3H7COOH

Пальмитиновая C15H31COOH

Стеариновая C17H35COOH

ненасыщенные

Олеиновая C17H33COOH

Линолевая C17H31COOH

Линоленовая C17H29COOH

Арахидоновая C19H31COOH

Ненасыщенные жирные кислоты (линолевая, линоленовая, арахидоновая) являются незаменимыми и поступают в организм человека в основном с растительными маслами. Насыщенные жирные кислоты синтезируются в организме из уксусной кислоты ферментативным путем.

В составе липидов высшие жирные кислоты связаны сложноэфирными или амидными связями со спиртами, важнейшими из которых являются трехатомный спирт глицерин и аминоспирт сфингозин.

В соответствии с их химическим строением и биологическими функциями различают три основные группы омыляемых липидов: нейтральные липиды, фосфолипиды и гликолипиды. В схеме 5. приведена классификация липидов.

Схема 5. Классификация липидов.

Нейтральные липиды представляют собой сложные эфиры высших жирных кислот и спиртов (высших одноатомных, глицерина, холестерина и др). Наиболее важными из них являются триацилглицериды и воски.

Триацилглицериды – это сложные эфиры глицерина и высших жирных кислот.

Общая формула:

Простые триацилглицериды содержат остатки одинаковых, смешанные – разных жирных кислот. Названия триацилглицеридов строятся на основе названий ацильных остатков, входящих в их состав жирных кислот.

Смешанные триацилглицериды могут содержать хиральный атом углерода в положении 2 и иметь энантиомеры, например:

Триацилглицериды – малополярные, не растворимые в воде вещества, так как их молекулы не содержат сильнополярных или заряженных групп. Триацилглицериды, содержащие преимущественно остатки ненасыщенных кислот, при обычных условиях являются жидкостями, насыщенных кислот – твердыми веществами. Они входят в состав животных жиров и растительных масел, которые представляют собой смеси триацилглицеридов. Животные жиры содержат в основном триацилглицериды с остатками насыщенных кислот и поэтому имеют твердую консистенцию. Растительные масла включают в основном остатки ненасыщенных кислот и являются жидкостями. Основная биологическая функция триацилглицеридов – запасные вещества животных и растений.

Химические свойства триацилглицеридов определяются наличием сложноэфирной связи и ненасыщенностью. Как сложные эфиры триацилглицериды гидролизуются под действием кислот и щелочей. Триацилглицериды подвергают гидролизу в кислой и щелочной средах, а также ферментативному гидролизу под действием фермента липазы.

При щелочном гидролизе (омылении) жиров образуются соли жирных кислот (мыла). Их молекулы дифильны (содержат полярную “голову” и неполярный “хвост”), что обуславливает их поверхностно-активные свойства и моющее действие.

Важным промышленным процессом является гидрогенизация жиров – каталитическое гидрирование растительных масел, в результате которого водород насыщает двойные связи, и жидкие масла превращаются в твердые жиры (маргарин). В процессе гидрогенизации происходит также изомеризация – перемещение двойных связей (при этом из полиненасыщенных кислот образуются кислоты с реакционноспособными, в том числе и в реакциях окисления, сопряженными двойными связями) и изменение их стереохимической конфигурации (цис в транс), а также частичное расщепление сложноэфирных связей. Существует мнение, что при этом образуются вещества небезопасные для организма. Наибольшей пищевой ценностью обладают растительные масла, которые наряду с незаменимыми жирными кислотами содержат необходимые для организма фосфолипиды, витамины, полезные фитостерины (предшественники витамина D) и практически не содержат холестерин.

Воски – это сложные эфиры жирных кислот и высших одноатомных спиртов (С12 – С46). Воски входят в состав защитного покрытия листьев растений и кожи человека и животных. Они придают поверхности характерный блеск и водоотталкивающие свойства, что важно для сохранения воды внутри организма и создания барьера между организмом и окружающей средой.

Фосфолипиды – общее название липидов, содержащих остаток фосфорной кислоты. Фосфолипиды – основные липидные компоненты клеточных мембран.

Основные структурные компоненты, составляющие молекулы фосфолипидов, – это глицерин, жирные кислоты, фосфорная кислота, аминоспирты (этаноламин или холин) или аминокислота серин. К ним относят фосфатидилэтаноламин, фосфатидилхолин и фосфатидилсерин.

Фосфатидилэтаноламин

Фосфатидилхолин

Фосфатидилсерин

Фосфолипиды – основные структурные компоненты клеточных мембран. Согласно жидкостно-мозаичной модели клеточные мембраны рассматриваются как липидные бислои. В таком бислое углеводородные радикалы фосфолипидов за счет гидрофобных взаимодействий находятся внутри, а полярные группы липидов располагаются на внешней поверхности бислоя. В жидкий липидный бислой встроены молекулы белков.

Сфинголипиды состоят из двуатомного длинноцепочечного ненасыщенного спирта сфингозина, жирных кислот, фосфорной кислоты и аминоспиртов - этаноламина или холина.

Молекулы фосфолипидов дифильны. Они содержат полярную гидрофильную “голову” и неполярный гидрофобный “хвост”. В водной среде они способны образовывать сферические мицеллы – липосомы, которые можно рассматривать как модель клеточных мембран.

Гликолипиды содержат углеводные остатки и не содержат фосфорной кислоты. Наиболее важными из них являются гликосфинголипиды. Основные структурные компоненты гликосфинголипидов: сфингозин, жирная кислота, моно- или олигосахсрид. Типичные представители гликосфинголипидов – цереброзиды и ганглиозиды. Цереброзиды содержат остатки D-галактозы или D-глюкозы, которые связаны с ОН группой сфингозина b -гликозидной связью. Цереброзиды входят в состав мембран нервных клеток. Ганглиозиды содержат остатки сложных олигосахаридов, способных нести отрицательный заряд за счет присутствия в них остатков сиаловых кислот. Ганглиозиды выделены из серого вещества мозга. Они образуют рецепторные участки на поверхности клеточных мембран.

studfile.net

7.2.2.2. Сфингогликолипиды

Сфингогликолипиды представлены цереброзидами и ганглиозидами.

Цереброзидысодержатся преимущественно в белом веществе головного мозга, состоят из церамида и галактозы.

Ганглиозиды состоят из церамида и олигосахаридных фрагментов, в которых концевое положение обычно занимают сиаловые кислоты. Ганглиозиды преобладают в сером веществе головного мозга, входят в состав клеточных рецепторов, участвуют в связывании некоторых токсинов, чужеродных веществ, участвуют в механизмах памяти, в иммунных реакциях.

7.2.3. Холестеринсодержащие липиды

Холестерин входит в состав клеточной мембраны (его содержание составляет около 2%), является источником синтеза других стероидов организма (жёлчные кислоты, витамин D, стероидные гормоны). В тканях он находится как в свободном состоянии, так и в виде эфиров (стероиды).

7.3. Содержание липидов в организме человека

Общее содержание липидов в тканях организма человека очень вариабельно и может составлять 10-20% массы тела, причём ¼ жиров является структурными липидами, а ¾ приходится на резервные жиры. У новорожденных содержание липидов ниже, чем у взрослых людей (8-16%), у недоношенных 3-4%. В течение первого года жизни содержание липидов в организме увеличивается до 28%.

7.4. Биологические функции липидов

  • Энергетическая функция: снабжают организм энергией. Калорическая ценность жиров выше, чем у углеводов и белков (1г жира даёт при окислении около 9 ккал). Энергетическую роль выполняют резервные жиры.

  • Пластическая функция: липиды входят в состав всех мембран.

  • Регуляторные функции:

а) липиды определяют проницаемость клеточных мембран, регулируют активность мембранных ферментов;

б) из липидов синтезируются особые тканевые гормоны эйкозаноиды, стероидные гормоны.

  • Защитная функция: липиды создают механическую защиту внутренних органов от повреждений и травм.

  • Терморегуляторная функция: липиды подкожной клетчатки снижают теплоотдачу организма.

  • Участвуют в проведении нервных импульсов, формируют миелиновые оболочки нервных пучков, играющие роль «электроизолятов».

  • Липиды растворяют жирорастворимые витамины.

  • Липиды являются важными источниками эндогенной воды.

7.5. Структура и функции клеточных мембран

Состав клеточных мембран. В состав клеточных мембран в различных соотношениях входят белки, жиры и углеводы. На долю белков в среднем приходится 50%, липидов - 30%, углеводов - 10%.

Белки представлены ферментами, структурными, транспортными, рецепторными белками. Около половины липидов мембран составляют глицерофосфолипиды, треть приходится на холестерин, меньшая часть - на сфинголипиды. Углеводы клеточных мембран представлены компонентами гликосфинголипидов, гликопротеидов.

Структура клеточных мембран. В настоящее время общепринятой является мозаичная структура клеточной мембраны. Согласно этой модели, основу клеточной мембраны составляют глицерофосфолипиды, которые ориентированы в мембране таким образом, что гидрофильные участки находятся на поверхности, а гидрофобные в глубине клеточной мембраны. В силу дифильности глицерофосфолипиды образуют билипидный слой. Фосфолипиды в клеточных мембранах располагается ассимитрично, на поверхности плазматической мембраны находятся в основном фосфатидилхолин, а внутри фосфатидилколамин и фосфатидилсерин.

Белки в клеточных мембранах делятся на поверхностные белки и интергральные. Интегральные белки обычно расположены в мембране асимметрично. Толщину мембраны пронизывает гидрофобные участки белка, чаще всего уложенные в виде альфа - спирали, С-конец полипептидной цепи находится на внутренней поверхности, а N-конец на внешней поверхности мембраны. Очень часто кN-концевому фрагменту присоединяются углеводы, выполняющие рецепторную функцию. Гидрофобные части белка связываются с гидрофобными участками липидов, а гидрофильные с гидрофильными участками липидов.

Физико-химические свойства мембранопределяются химическим составом мембран и температурой окружающей среды. Жёсткость мембранам придают холестерин и насыщенные жирные кислоты. Непредельные жирные кислоты определяют текучесть липидов клеточной мембраны. При низкой температуре фосфолипиды достаточно жёстко зафиксированы в составе мембраны, при повышении температуры возможно перемещение липидов. При температуре тела липиды находятся в жидко – кристаллическом состоянии.

Функции клеточных мембран

  1. Разделительная функция – мембраны придают форму клеткам, формируют внутренние отсеки, взаимодействуют со структурой цитоскелета.

  2. Коммуникативная функция – мембраны обеспечивают межклеточные контакты с помощью рецепторов.

  3. Метаболическая функция – в клеточные мембраны встроены мембранные ферменты.

  4. Транспортная функция – через мембрану осуществляется транспорт веществ.

  5. Рецепторная функция – избирательное взаимодействие рецепторов мембран с различными веществами.

Транспорт веществ через клеточные мембраны

  1. Пассивный транспорт веществ, который осуществляется по градиенту концентрации через соответствующие мембранные каналы.

  2. Активный транспорт против градиента концентрации с использованием энергии АТФ.

  3. Облегчённый транспорт, в котором участвуют особые дополнительные транспортные белки, осуществляющие или однонаправленное перемещение двух веществ, или разнонаправленное перемещение двух веществ через мембрану.

4. Транспорт макромолекул осуществляется путём эндоцитоза или экзоцитоза.

studfile.net


Смотрите также

Женские новости :)